Deep Learning for Improved Subsurface Imaging: Enhancing GPR Clutter Removal Performance Using Contextual Feature Fusion and Enhanced Spatial Attention

Author:

Li Yi1,Dang Pengfei12ORCID,Xu Xiaohu3,Lei Jianwei4ORCID

Affiliation:

1. School of Civil Engineering, Guangzhou University, Guangzhou 510006, China

2. Earth System Science Programme, Faculty of Science, The Chinese University of Hong Kong, Shatin, Hong Kong 999077, China

3. Gold Leaf Production and Mamufacturing Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou 450000, China

4. School of Water Conservancy and Civil Engineering, Zhengzhou University, Zhengzhou 450001, China

Abstract

In engineering practice, ground penetrating radar (GPR) records are often hindered by clutter resulting from uneven underground media distribution, affecting target signal characteristics and precise positioning. To address this issue, we propose a method combining deep learning preprocessing and reverse time migration (RTM) imaging. Our preprocessing approach introduces a novel deep learning framework for GPR clutter, enhancing the network’s feature-capture capability for target signals through the integration of a contextual feature fusion module (CFFM) and an enhanced spatial attention module (ESAM). The superiority and effectiveness of our algorithm are demonstrated by RTM imaging comparisons using synthetic and laboratory data. The processing of actual road data further confirms the algorithm’s significant potential for practical engineering applications.

Funder

Natural Science Foundation of Guangxi Province

Postdoctoral Office of Guangzhou City, China

Natural National Science Foundation for Young Scientists of China

Postdoctoral Program of International Training Program for Young Talents of Guangdong Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3