Influence of Precipitation Effects Induced by Large-Scale Irrigation in Northwest China on Soil Erosion in the Yellow River Basin

Author:

Huang Ya1ORCID,Zhao Yong2ORCID,Li Guiping1,Yang Jing1,Li Yanping1

Affiliation:

1. College of Oceanography, Hohai University, Nanjing 210098, China

2. State Key Laboratory of Simulation and Regulation of Water Cycle in River Catchment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China

Abstract

Large-scale irrigation can alter the regional water cycle process, which changes the structure and spatiotemporal distribution of local and downwind precipitation, impacting soil erosion in both the irrigated areas and the surrounding regions. However, the effects of large-scale irrigation on soil erosion in downwind vulnerable areas have not been investigated. The study used the high-resolution regional climate model (RegCM4) and the revised universal soil loss equation (RUSLE) to examine the effects of irrigation-induced precipitation in Northwest China on the frequency, distribution, and intensity of precipitation in the Yellow River Basin (YRB) under different Representative Concentration Pathways (RCPs). The response characteristics of soil erosion to the irrigation-induced precipitation effects and its relationship with slope, elevation, and land use type were analyzed as well. The results indicate that soil erosion in most regions of the YRB is below moderate, covering 84.57% of the basin. Irrigation leads to a 10% increase in summer precipitation indices (e.g., total wet-day precipitation, consecutive wet days, number of wet days with precipitation ≥ 1 mm, and number of heavy precipitation days with precipitation ≥ 12 mm) in the northwest of the basin. Irrigation also leads to a change in local circulation, resulting in reduced precipitation in the southeast of the basin, particularly under the RCP8.5 scenario. The transformation of erosion intensity between low-grade and high-grade erosion is relatively stable and small under the influence of precipitation. However, soil erosion changes display strong spatial heterogeneity, inter-annual and intra-annual fluctuations, and uncertainties. The findings of this study can be helpful for policymakers and water resource managers to better understand the impacts of large-scale irrigation on the environment and to develop sustainable water management strategies.

Funder

National Key Research and Development Program of China

China Institute of Water Resources and Hydropower Research

Jiangsu Funding Program for Excellent Postdoctoral Talent

Ministry of Water Resources

Systematic Project of Guangxi Key Laboratory of Disaster Prevention and Engineering Safety

TianHe Qingsuo Project special fund project in the field of climate, meteorology and ocean

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3