Assessing the Impact of Land Use and Land Cover Changes on Aflaj Systems over a 36-Year Period

Author:

Al-Kindi Khalifa M.1ORCID,Alqurashi Abdullah F.2ORCID,Al-Ghafri Abdullah1,Power Dennis1

Affiliation:

1. UNESCO Chair of Aflaj Studies, Archaeohydrology, University of Nizwa, Nizwa P.O. Box 33, Oman

2. Department of Geography, Umm Al-Qura University, Makkah 21955, Saudi Arabia

Abstract

The aflaj systems represent unique irrigation technologies that have been implemented in the Sultanate of Oman. This innovative system, referred to as “falaj” in the singular form, is composed of a sophisticated network of underground tunnels and open-air channels designed to access shallow subterranean water tables, thereby providing water for residential and agricultural use. The aflaj systems have played a significant role in supporting sustainable water resource management in arid and semiarid regions, making a notable contribution to the socioeconomic development of the country. The alteration of land use and land cover (LULC) in arid and semiarid regions can have significant consequences for hydrological systems, affecting the ability of local ecosystems to manage fresh surface and groundwater resources. These changes are often caused by both natural and anthropogenic factors. To investigate the impact of LULC changes on aflaj systems in the northern part of Oman, we utilized satellite imagery, aflaj data, and spatial analytical and image processing techniques within the framework of geographic information systems (GIS) and remote sensing. In the first part of the study, we quantified the changes in LULC and their impact on aflaj systems in seven cities in Oman due to urban expansion. In the second part, we evaluated the effect of LULC on groundwater for four major aflaj between 1985 and 2021. The study area was divided into four primary LULC classifications: vegetation, bodies of water, metropolitan areas, and bare soil. The classification maps demonstrated a high overall accuracy of 90% to 95%, indicating satisfactory performance. Our results revealed a significant reduction in vegetation areas between 1985 and 2021, primarily shifting from bare soil (BS) to urban areas (UAs) and from vegetation cover (VC) to BS, due to the reduction of groundwater resources. Over the four study periods (1985–1990, 1990–2000, 2000–2013, and 2013–2021), the percentages of the total area of Falaj Al-Muyasser, Falaj Daris, Falaj Al-Maliki, and Falaj Al-Khatmeen that transformed from agricultural lands to UAs were 40%, 39%, 32%, and 8%, respectively. Our study highlights the need for appropriate land management and planning to ensure the most effective solutions are utilized to meet social and economic sustainability requirements. In conclusion, our study presents a comprehensive analysis of LULC changes and their impact on aflaj systems over a 36-year period, providing new insights into the potential effects of LULC changes on groundwater resources and offering a basis for informed decision making on land management in arid and semiarid areas.

Funder

the Sultanate of Oman’s Ministry of Higher Education Innovation and Research

the Sultan Qaboos Higher Center for Culture and Science—Diwan of the Royal Court

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3