Modeling Trajectories Obtained from External Sensors for Location Prediction via NLP Approaches

Author:

Cruz Lívia AlmadaORCID,Coelho da Silva Ticiana Linhares,Magalhães Régis PiresORCID,Melo Wilken Charles Dantas,Cordeiro MatheusORCID,de Macedo José Antonio Fernandes,Zeitouni KarineORCID

Abstract

Representation learning seeks to extract useful and low-dimensional attributes from complex and high-dimensional data. Natural language processing (NLP) was used to investigate the representation learning models to extract words’ feature vectors using their sequential order in the text via word embeddings and language models that maintain their semantic meaning. Inspired by NLP, in this paper, we tackle the representation learning problem for trajectories, using NLP methods to encode external sensors positioned in the road network and generate the features’ space to predict the next vehicle movement. We evaluate the vector representations of on-road sensors and trajectories using extrinsic and intrinsic strategies. Our results have shown the potential of natural language models to describe the space of features on trajectory applications as the next location prediction.

Funder

Fundação Cearense de Apoio ao Desenvolvimento Científico e Tecnológico

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference39 articles.

1. A Method for LSTM-Based Trajectory Modeling and Abnormal Trajectory Detection

2. Probabilistic Robust Route Recovery with Spatio-Temporal Dynamics

3. DeepMove

4. Efficient estimation of word representations in vector space;Mikolov;arXiv,2013

5. Language-agnostic bert sentence embedding;Feng;arXiv,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Predição de Geolocalização de Veículo com Alerta de Roubo Usando LSTM, Transformer e TLE;Anais do XVI Simpósio Brasileiro de Computação Ubíqua e Pervasiva (SBCUP 2024);2024-07-21

2. Trajectory modeling via random utility inverse reinforcement learning;Information Sciences;2024-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3