Changes of C, H, and N Elements of Corn Straw during the Microwave Heating Process

Author:

Liu Zhihong1,Cao Weitao1,Zhang Man2,Zhao Wenke1,Zhang Yaning1

Affiliation:

1. School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China

2. Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China

Abstract

Due to the rapid growth of the global economy, energy consumption has been steadily increasing, leading to increasing issues such as energy shortages and environmental concerns. Biomass energy, a critical renewable energy source, plays a vital role in advancing low-carbon energy development and resource sustainability. In this study, experiments were conducted to study the migration of C, H, and N elements of corn straw during the microwave heating process, and the effects of residence time, heating temperature, and microwave power were also investigated. The results showed that when the temperature rose, both the proportion of C and H elements fluctuated slightly. Specifically, when the temperature rose from 75 °C to 275 °C, there was a 1.02% increase in the proportion of the C element and a 0.25% decrease in the proportion of the H element. Residence time appeared to be a significant factor influencing the changes in C, H, and N elements. For a 40 min residence time, the proportion of the C element increased from 31.77% to 35.36%, while the proportion of the H element decreased from 4.50% to 3.83%. When there was an increase in the microwave power between 160 W and 200 W, higher temperatures were reached in the samples, leading to the carbonization process of corn straw being more complete. Consequently, the proportion of the C element rose with extended residence time, whereas the proportion of the H element decreased as the residence time increased.

Funder

National Natural Science Foundation of China

Heilongjiang Province “Double First-class” Discipline Collaborative Innovation Achievement Project

Heilongjiang Provincial Key R&D Program “Unveiling the Leader” Project

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3