Temperature Dependence of Absorption and Energy Transfer Efficiency of Er3+/Yb3+/P5+ Co-Doped Silica Fiber Core Glasses

Author:

Cheng YueORCID,Dong Hehe,Yu Chunlei,Yang Qiubai,Jiao Yan,Wang Shikai,Shao Chongyun,Hu Lili,Dai YeORCID

Abstract

A high phosphorus Er3+/Yb3+ co-doped silica (EYPS) fiber core glass was prepared using the sol-gel method combined with high-temperature sintering. The absorption spectra, emission spectra, and fluorescence decay curves were measured and compared in temperatures ranging from 300 to 480 K. Compared to 915 and 97x nm, the absorption cross-section at ~940 nm (~0.173 pm2) demonstrates a weaker temperature dependence. Hence, the 940 nm pump mechanism is favorable for achieving a high-power laser output at 1.5 μm. Additionally, the double-exponential fluorescence decay of Yb3+ ions and the emission intensity ratio of I1018nm/I1534nm were measured to evaluate the energy transfer efficiency from Yb3+ ions to Er3+ ions. Through the external heating and active quantum defect heating methods, the emission intensity ratios of I1018nm/I1534nm increase by 30.6% and 709.1%, respectively, from ~300 to ~480 K. The results indicate that the temperature rises significantly reduce the efficiency of the energy transfer from the Yb3+ to the Er3+ ions.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3