A Comprehensive Study of Pristine and Calcined f-MWCNTs Functionalized by Nitrogen-Containing Functional Groups

Author:

Bajorek AnnaORCID,Szostak BogumiłaORCID,Dulski MateuszORCID,Greneche Jean-MarcORCID,Lewińska SabinaORCID,Liszka Barbara,Pawlyta MirosławaORCID,Ślawska-Waniewska Anna

Abstract

We present the study of pristine and calcined f-MWCNTs functionalized by nitrogen-containing functional groups. We focus on the structural and microstructural modification tuned by the previous annealing. However, our primary goal was to analyze the electronic structure and magnetic properties in relation to the structural properties using a multi-technique approach. The studies carried out by X-ray diffraction, XPS, and 57Fe Mössbauer spectrometry revealed the presence of γ-Fe nanoparticles, Fe3C, and α-FeOOH as catalyst residues. XPS analysis based on the deconvolution of core level lines confirmed the presence of various nitrogen-based functional groups due to the purification and functionalization process of the nanotubes. The annealing procedure leads to a structural modification mainly associated with removing surface impurities as purification residues. Magnetic studies confirmed a significant contribution of Fe3C as evidenced by a Curie temperature estimated at TC = 452 ± 15 K. A slight change in magnetic properties upon annealing was revealed. The detailed studies performed on nanotubes are extremely important for the further synthesis of composite materials based on f-MWCNTs.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3