Abstract
This paper proposes a multi-objective optimization model for anti-symmetric cylindrical shell in the bionic gripper structure. Here, the response surface method is used to establish multiple surrogate models of the anti-symmetric cylindrical shell, and the non-dominated sorting genetic algorithm-II (NSGA-II) is used to optimize the design space of the anti-symmetric cylindrical shell; the design points of the anti-symmetric cylindrical shell are verified by experimental methods. The optimization goals are that the first steady state transition load (the transition process of the bionic gripper structure from the open state to the closed state) of the anti-symmetric cylindrical shell is minimized, and the second steady state transition load (the transition process of the bionic gripper structure from the closed state to the open state) is the largest. At the same time, in order to prevent stable instability caused by stress concentration in the second steady state of the anti-symmetric cylindrical shell, the maximum principal plane stress is given as the constraint condition. The validity of the optimization results is verified by finite element and experimental methods. Due to the stable transition load of the anti-symmetric cylindrical shell being significantly larger than that of the orthogonal laminated plate, therefore, the anti-symmetric cylindrical shell has potential application prospects in the application of deformable structures and bionic structures that require composite functions such as having light weight, high strength, and large clamping force. The novelty of this paper lies in the multi-objective optimization of the application of the antisymmetric bistable cylindrical shell in the bionic gripper structure.
Funder
National Natural Science Foundation of China
Zhejiang Province Natural Science Foundation
Subject
General Materials Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献