Author:
Li Zhonglin,Wang Ding,Lv Fengcheng,Chen Junxue,Wu Chengzhi,Li Yuping,Shen Jialong,Li Yibing
Abstract
We explore a more concise process for the preparation of high-purity alumina and to address the problem of some conventional micro- and nano-adsorbents having difficulty in exposing their adsorption sites to target pollutants in solution due to the heavy aggregation of the adsorbent, which confers poor adsorption properties. The methods of using gamma-phase high-purity mesoporous alumina (HPMA), with its excellent adsorption properties and high adsorption rates of Congo Red, and of using lower-cost industrial aluminum hydroxide by direct aging and ammonium salt substitution were successfully employed. The results showed that the purity of HPMA was as high as 99.9661% and the total removal rate of impurities was 98.87%, a consequence of achieving a large specific surface area of 312.43 m2 g−1, a pore volume of 0.55 cm3 g−1, and an average pore diameter of 3.8 nm. The adsorption process was carried out at 25 °C, the concentration of Congo Red (CR) dye was fixed at 250 mg L−1 and the amount of adsorbent used was 100 mg. The HPMA sample exhibited an extremely fast adsorption rate in the first 10 min, with adsorption amounts up to 476.34 mg g−1 and adsorption efficiencies of 96.27%. The adsorption equilibrium was reached in about 60 min, at which time the adsorbed amount was 492.19 mg g−1 and the dye removal rate was as high as 98.44%. One-hundred milligrams of adsorbent were weighed and dispersed in 200-mL CR solutions with mass concentrations ranging from 50–1750 mg L−1 to study the adsorption isotherms. This revealed that the saturation adsorption capacity of the produced HPMA was 1984.64 mg g−1. Furthermore, the process of adsorbing Congo Red in the synthesized product was consistent with a pseudo-second order model and the Langmiur model. It is expected that this method of producing HPMA will provide a productive, easy and efficient means of treating toxic dyes in industrial wastewater.
Subject
General Materials Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献