Vacuum Brazing of Metallized YSZ and Crofer Alloy Using 72Ag-28Cu Filler Foil

Author:

Huang Liang-Wei,Shiue Ren-KaeORCID,Liu Chien-Kuo,Cheng Yung-Neng,Lee Ruey-Yi,Tsay Leu-WenORCID

Abstract

The study focused on dissimilar brazing of metallized YSZ (Yttria-Stabilized Zirconia) and Crofer alloy using BAg-8 (72Ag-28Cu, wt%) filler foil. The YSZ substrate was metallized by sequentially sputtering Ti (0.5/1 μm), Cu (1/3 μm), and Ag (1.5/5 μm) layers, and the Crofer substrate was coated with Ag layers with a thickness of 1.5 and 5 μm, respectively. The BAg-8 filler demonstrated excellent wettability on both metallized YSZ and Crofer substrates. The brazed joint primarily consisted of Ag-Cu eutectic. The metallized Ti layer dissolved into the braze melt, and the Ti preferentially reacted with YSZ and Fe from the Crofer substrate. The globular Fe2Ti intermetallic compound was observed on the YSZ side of the joint. The interfacial reaction of Ti was increased when the thickness of the metallized Ti layer was increased from 0.5 to 1 μm. Both brazed joints were crack free, and no pressure drop was detected after testing at room temperature for 24 h. In the YSZ/Ti(0.5μ)/Cu(1μ)/Ag(1.5μ)/BAg-8(50μ)/Ag(1.5μ)/Crofer joint tested at 600 °C, the pressure of helium decreased from 2.01 to 1.91 psig. In contrast, the helium pressure of the YSZ/Ti(1μ)/Cu(3μ)/Ag(5μ)/BAg-8(50μ)/Ag(5μ)/Crofer joint slightly decreased from 2.02 to 1.98 psig during the cooling cycle of the test. The greater interfacial reaction between the metallized YSZ and BAg-8 filler due to the thicker metallized Ti layer on the YSZ substrate was responsible for the improved gas-tight performance of the joint.

Funder

Ministry of Science and Technology, ROC

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3