3DAirSig: A Framework for Enabling In-Air Signatures Using a Multi-Modal Depth Sensor

Author:

Malik Jameel,Elhayek Ahmed,Ahmed SherazORCID,Shafait Faisal,Malik Muhammad,Stricker Didier

Abstract

In-air signature is a new modality which is essential for user authentication and access control in noncontact mode and has been actively studied in recent years. However, it has been treated as a conventional online signature, which is essentially a 2D spatial representation. Notably, this modality bears a lot more potential due to an important hidden depth feature. Existing methods for in-air signature verification neither capture this unique depth feature explicitly nor fully explore its potential in verification. Moreover, these methods are based on heuristic approaches for fingertip or hand palm center detection, which are not feasible in practice. Inspired by the great progress in deep-learning-based hand pose estimation, we propose a real-time in-air signature acquisition method which estimates hand joint positions in 3D using a single depth image. The predicted 3D position of fingertip is recorded for each frame. We present four different implementations of a verification module, which are based on the extracted depth and spatial features. An ablation study was performed to explore the impact of the depth feature in particular. For matching, we employed the most commonly used multidimensional dynamic time warping (MD-DTW) algorithm. We created a new database which contains 600 signatures recorded from 15 different subjects. Extensive evaluations were performed on our database. Our method, called 3DAirSig, achieved an equal error rate (EER) of 0 . 46 %. Experiments showed that depth itself is an important feature, which is sufficient for in-air signature verification. The dataset will be publicly available (https://goo.gl/yFdfdL).

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Revolutionizing Signature Recognition: A Contactless Method with Convolutional Recurrent Neural Networks;International Journal of Technology;2024-07-10

2. Enhanced In-air Signature Verification via Hand Skeleton Tracking to Defeat Robot-level Replays;Annual Computer Security Applications Conference;2023-12-04

3. Estimation of 3D anatomically précised hand poses using single shot corrective CNN;Journal of Intelligent & Fuzzy Systems;2023-11-04

4. New In-Air Signature Datasets;2023 International Symposium on Networks, Computers and Communications (ISNCC);2023-10-23

5. Enhancing 3D-Air Signature by Pen Tip Tail Trajectory Awareness: Dataset and Featuring by Novel Spatio-temporal CNN;2023 IEEE International Joint Conference on Biometrics (IJCB);2023-09-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3