Integrating Data-Based Strategies and Advanced Technologies with Efficient Air Pollution Management in Smart Cities

Author:

Myeong SeunghwanORCID,Shahzad Khurram

Abstract

The COVID-19 pandemic has demonstrated that creative leadership based on data and citizen volunteers is more significant than vaccines themselves, so this study focuses on the collaboration of sophisticated technologies and human potential to monitor air pollution. Air pollution contributes to critical environmental problems in various towns and cities. With the emergence of the smart city concept, appropriate methods to curb exposure to pollutants must be part of an appropriate urban development policy. This study presents a technologically driven air quality solution for smart cities that advertises energy-efficient and cleaner sequestration in these areas. It attempts to explore how to incorporate data-driven approaches and citizen participation into effective public sector pollution management in smart cities as a major component of the smart city definition. The smart city idea was developed as cities became more widespread through communication devices. This study addresses the technical criteria for implementing a framework that public administration can use to prepare for renovation of public buildings, minimizing energy use and costs and linking smart police stations to monitor air pollution as a part of an integrated city. Such a digital transition in resource management will increase public governance energy performance and provide a higher standard for operations and a healthier environment. The study results indicate that complex processes lead to efficient and sustainable smart cities. This research discovered an interpretive pattern in how public agencies, private enterprises, and community members think and what they do in these regional contexts. It concludes that economic and social benefits could be realized by exploiting data-driven smart city development for its social and spatial complexities.

Funder

Inha University

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3