Data-Driven Public R&D Project Performance Evaluation: Results from China

Author:

Li HongboORCID,Yao Bowen,Yan Xin

Abstract

In public R&D projects, to improve the decision-making process and ensure the sustainability of public investment, it is indispensable to effectively evaluate the project performance. Currently, public R&D project management departments and various academic databases have accumulated a large number of project-related data. In view of this, we propose a data-driven performance evaluation framework for public R&D projects. In our framework, we collect structured and unstructured data related to completed projects from multiple websites. Then, these data are cleaned and fused to form a unified dataset. We train a project performance evaluation model by extracting the project performance information implicit in the dataset based on multi-classification supervised learning algorithms. When facing a new project that needs to be evaluated, its performance can be automatically predicted by inputting the characteristic information of the project into our performance evaluation model. Our framework is validated based on the project data of the National Natural Science Foundation of China (NSFC) in terms of four performance measures (i.e., Accuracy, Recall, Precision, F1 score). In addition, we provide a case study that applies our framework to evaluate the project performance in the logistics and supply chain area of NSFC. In conclusion, this paper contributes to the body of knowledge in sustainability by developing a data-driven method that equips the decision-maker with an automated project performance evaluation tool to make sustainable project decisions.

Funder

National Natural Science Foundation of China

Key Soft Science Project of Shanghai Science and Technology Innovation Action Plan

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3