The Flotation Separation Mechanism of Smithsonite from Calcite and Dolomite with Combined Collectors

Author:

Chen Xiangxiang12,Bai Junzhi3,Zhang Zhaoyang1,Qiang Wen1,Huang Shiyi1,Ouyang Yunfei1,Liu Tianhao1,Yin Wanzhong12

Affiliation:

1. Zijin School of Geology and Mining, Fuzhou University, Fuzhou 350108, China

2. Fujian Key Laboratory of Green Extraction and High Value Utilization of New Energy Metals, Fuzhou 350108, China

3. Zijin Mining Group Co., Ltd., Longyan 364200, China

Abstract

Smithsonite, dolomite, and calcite are carbonate minerals. The crystal structures and spatial distribution characteristics of their common surface metal sites are similar, leading to difficulty in the flotation separation of smithsonite from these carbonate gangues. In this paper, the floatability of smithsonite, dolomite, and calcite in sodium oleate, salicylhydroxamic acid, and their combined-collector system were systematically studied through single-mineral flotation tests, respectively. The results showed that it was difficult to obtain a noticeable recovery difference between smithsonite–calcite and smithsonite–dolomite in a single-collector system of sodium oleate and salicylhydroxamic acid, both at the same time. In the combined-collector system of salicylhydroxamic acid and sodium oleate with total dosage of 6 × 10−4 mol/L, molar ratio of 3:1, and pH of 8.0, the recovery difference of smithsonite–calcite and smithsonite–dolomite could reach the highest values of 38.46% and 37.98%, respectively, while obtaining the highest smithsonite recovery of 88.19%. The adsorption mechanism of the combined collectors was investigated via Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, a collector adsorption test, and zeta potential measurements, respectively.

Funder

National Natural Science Foundation of China

Talent Fund of Fuzhou University

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3