Clumped Isotope Reordering and Kinetic Differences in Co-Hosted Calcite and Dolomite Minerals throughout Burial Diagenesis and Exhumation

Author:

Adlan Qi1ORCID,Kaczmarek Stephen2,John Cédric1ORCID

Affiliation:

1. Department of Earth Science and Engineering, Imperial College London, London SW7 2AZ, UK

2. Department of Geological and Environmental Sciences, Western Michigan University, Kalamazoo, MI 49008, USA

Abstract

The clumped isotope paleo-thermometer has become a valuable proxy for the burial history reconstruction of carbonate formations. To maximise the accuracy of these reconstructions, post-depositional alterations, such as recrystallisation and Δ47 isotope exchange reactions, must be understood. In this study, we examine the isotopic behaviour of calcites and early dolomite samples from the same stratigraphic intervals, and thus with similar burial history. This approach provides additional constraints on the kinetics of Δ47 reordering in dolomite during exhumation. Clumped isotope measurements were performed on 19 calcites and 15 early dolomites from the Permian, Jurassic, and Cretaceous periods from four locations in Oman spanning different burial regimes. The calcite and dolomite samples were collected from the rock matrix, based on the assumption that fine material was more susceptible to recrystallisation. Our results show that calcites and dolomites record different Δ47 values despite being subjected to the same thermal history. The maximum Δ47 temperature recorded in dolomites (181 ± 13 °C) corresponds to the oldest and most deeply buried Permian rock. This value is approximately 35 °C higher than those measured in the co-located and coeval calcite matrix (145 ± 14 °C). This discrepancy suggests that calcite and dolomite have different kinetic parameters. Our data confirm (1) that dolomite Δ47 values are more resistant to alteration during burial and exhumation than Δ47 calcite values, and (2) that dolomite has a higher Δ47 closing temperature than calcite during cooling. The presence of two mineral phases with distinct kinetic parameters in the same stratigraphic unit provides additional constraints on models of burial and uplift. In addition, mineralogical data coupled with Δ47 and burial depths suggest that the progressive development of dolomite cation ordering is driven by temperature elevation, as previously suggested.

Funder

Indonesia Endowment Fund for Education

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3