In Vitro Experimental Observations on Fungal Colonization, Metalophagus Behavior, Tunneling, Bioleaching and Bioweathering of Multiple Mineral Substrates

Author:

Kolo Kamal1ORCID,Préat Alain2ORCID

Affiliation:

1. Department of Biogeosciences, Scientific Research Center (SRC), Soran University, Soran 30802, Kurdistan Region, Iraq

2. Research Group–Biogeochemistry & Modeling of the Earth System, Free University of Brussels (ULB), B-1050 Brussels, Belgium

Abstract

This study reports on experimental observations during fungi–mineral substrate interactions. Selected mineral substrates of biotite, muscovite, bauxite, chromite, galena, malachite, manganite, and plagioclase were exposed in vitro to free fungal growth under open conditions. The interaction produced strong biochemical and biomechanical alterations to the mineral substrates. Specifically, reported here is a three-dimensional thigmotropic colonization pattern of the mineral surfaces that suggested a possible pattern of fungal metalophagus behavior. Authigenic secondary mineral biomineralization occurred: Ca- and Mg-Oxalates such as weddellite: CaC2O4·2H2O, whewellite: CaC2O4·H2O, and glushinskite: MgC2O4·2H2O; struvite: (NH4) MgPO4·6H2O; gibbsite: Al(OH)3; and gypsum: CaSO4·2H2O. The bioleached elements included Fe, Pb, S, Cu, and Al, which formed single crystals or aggregates, amorphous layers, amorphous aggregates, and linear forms influenced by the fungal filaments. The fungi bioleached Fe and Al from bauxite and Mn from manganite and deposited the metals as separate mineral species. Gypsum was deposited during the interaction with the manganite substrate, indicating a source of Ca and S either within manganite impurities or within the fungal growth environment. Other biochemical and biomechanical features such as tunneling, strong pitting, exfoliation, dissolution, perforations, and fragmentation of the mineral surfaces were also produced. The results of this study, besides emphasizing the role of fungi in bioweathering and mineral alteration, also show that, to produce these alterations, fungi employ a 3D fungal colonization pattern of mineral surfaces guided by thigmotropic and possible metalophagus behavior.

Funder

Universite Libre de Bruxelles (ULB)-Belgium

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3