Calcium Carbonate Precipitation Behavior in the System Ca-Me2+-CO3-H2O (Me2+ = Co, Ni, Cu, Fe): Ion Incorporation, Effect of Temperature and Aging

Author:

Vereshchagin Oleg S.1ORCID,Chernyshova Irina A.1ORCID,Kuz’mina Maria A.1,Frank-Kamenetskaya Olga V.1ORCID

Affiliation:

1. Institute of Earth Sciences, Saint Petersburg State University, Universitetskaya Emb. 7/9, 199034 St. Petersburg, Russia

Abstract

Crystalline calcium carbonates (CCCs) are among the most widespread minerals on the Earth’s surface and play a crucial role in the global carbon cycle, heavy metal sorption and incorporation. Among the numerous factors that influence the precipitation of CCCs from solution, the most determinant are the presence of additives in the mineral-forming medium, temperature, and crystallization time (aging time). The current work fills the gaps in the study of calcium carbonate crystallization from heavy metal (Me2+ = Co, Ni, Cu Fe)-containing solutions (Me2+/Ca 0.005–1.600) at different temperatures (3 and 23 °C) and aging times (21–158 days). The resulting precipitates were studied using optical and scanning electron microscopy, powder X-ray diffraction and energy-dispersive X-ray spectroscopy. Three crystalline calcium carbonates (synthetic analogues of calcite, aragonite and monohydrocalcite), as well as amorphous carbonate (AC), were found in the resulting precipitates. Temperature and aging time have a considerable effect on the phase composition, morphology and heavy metal content in CCCs. Low temperature (3 °C) and short aging times are generally favorable for the formation of monohydrocalcite and amorphous carbonate, while calcite tends to form at a higher temperature (23 °C) and in long-term experiments. Heavy metals can be incorporated into the calcite/monohydrocalcite crystal lattice in sufficient amounts, while aragonite can host a very small amount of Me2+ (or none). Calcite can concentrate Co (up to ~0.25 atoms per formula unit (apfu)) and Ni/Cu (up to ~0.05 apfu), while its Fe content is very close to the detection limits. Calcite precipitated at a higher Me2+/Ca ratio and temperature (23 °C) contains less Me2+ compared to calcite precipitated at a lower Me2+/Ca ratio and temperature (3 °C). Monohydrocalcite can host up to ~0.1 apfu of Co/Ni/Cu with no detectable preference for Me2+. The amount of Me2+ in monohydrocalcite decreases as aging time or temperature increases. It is worth noting that AC is the main carrier of heavy metals in the system being investigated and it should be considered the main host phase in heavy metal adsorption from aqueous solutions. The results obtained can be used to solve environmental issues and in mineral resource management.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3