FedSepsis: A Federated Multi-Modal Deep Learning-Based Internet of Medical Things Application for Early Detection of Sepsis from Electronic Health Records Using Raspberry Pi and Jetson Nano Devices

Author:

Alam Mahbub UlORCID,Rahmani RahimORCID

Abstract

The concept of the Internet of Medical Things brings a promising option to utilize various electronic health records stored in different medical devices and servers to create practical but secure clinical decision support systems. To achieve such a system, we need to focus on several aspects, most notably the usability aspect of deploying it using low-end devices. This study introduces one such application, namely FedSepsis, for the early detection of sepsis using electronic health records. We incorporate several cutting-edge deep learning techniques for the prediction and natural-language processing tasks. We also explore the multimodality aspect for the better use of electronic health records. A secure distributed machine learning mechanism is essential to building such a practical internet of medical things application. To address this, we analyze two federated learning techniques. Moreover, we use two different kinds of low-computational edge devices, namely Raspberry Pi and Jetson Nano, to address the challenges of using such a system in a practical setting and report the comparisons. We report several critical system-level information about the devices, namely CPU utilization, disk utilization, process CPU threads in use, process memory in use (non-swap), process memory available (non-swap), system memory utilization, temperature, and network traffic. We publish the prediction results with the evaluation metrics area under the receiver operating characteristic curve, the area under the precision–recall curve, and the earliness to predict sepsis in hours. Our results show that the performance is satisfactory, and with a moderate amount of devices, the federated learning setting results are similar to the single server-centric setting. Multimodality provides the best results compared to any single modality in the input features obtained from the electronic health records. Generative adversarial neural networks provide a clear superiority in handling the sparsity of electronic health records. Multimodality with the generative adversarial neural networks provides the best result: the area under the precision–recall curve is 96.55%, the area under the receiver operating characteristic curve is 99.35%, and earliness is 4.56 h. FedSepsis suggests that incorporating such a concept together with low-end computational devices could be beneficial for all the medical sector stakeholders and should be explored further.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference54 articles.

1. The challenge of complexity in health care;Plsek;Bmj,2001

2. Irfan, M., and Ahmad, N. (2018, January 25–26). Internet of Medical Things: Architectural model, motivational factors and impediments. Proceedings of the 2018 15th Learning and Technology Conference (L&T), Jeddah, Saudi Arabia.

3. Internet of Medical Things (IoMT): Applications, benefits and future challenges in healthcare domain;Joyia;J. Commun.,2017

4. Emerging trends, issues, and challenges in Internet of Medical Things and wireless networks;Manogaran;Pers. Ubiquitous Comput.,2018

5. Goyal, S., Sharma, N., Bhushan, B., Shankar, A., and Sagayam, M. (2021). Cognitive Internet of Medical Things for Smart Healthcare, Springer International Publishing.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3