Analysis of the Performance of a Solar Thermoelectric Generator for Variable Leg Geometry with Nanofluid Cooling

Author:

Ramos-Castañeda Cristian Francisco,Olivares-Robles Miguel AngelORCID,Méndez-Méndez Juan Vicente

Abstract

In this study, the impact of nanofluid use in solar-thermoelectric generators (Solar-TEG) on thermal performance is investigated through analysis and simulation methodology. For conventional cooling analysis, we use air as a coolant and graphene nanoplatelet aqueous nanofluids (GNAN) for nanofluid cooling. We make a comparison between traditional and nanofluid cooling to find the best performance. GNAN at a dispersion of 0.025, 0.05, 0.075, and 0.1-wt% are added to the cooling system. GNAN has been used in the technological development of energy conversion. It has been proposed as a material to achieve better efficiency in Solar-TEG. Five different geometries are developed to analyze the efficiency in a Solar-TEG to find the optimal design. The impact of the thermal concentration relationship, substrate area, and convective transfer coefficient on Solar-TEG performance is investigated. To simplify and speed up simulations, we use equivalent models based on FEM. We are considering the properties of temperature-dependent semiconductors. For thermoelement materials, we use lead-tellurium. Lead-tellurium is an excellent material for thermoelectric study and supports large temperature ranges (up to 750 K). The thermal concentration relationship depends on the substrate area, which affects the efficiency of Solar-TEG. The maximum efficiency between the five geometry types is 5.53%, with a substrate of 110 × 100 mm2. The efficiency and output power using 0.1% wt GNAN as the refrigerant is enhanced by 14.74% and 26.39%. GNAN cooling improves compared to conventional fluid cooling in a Solar-TEG. Different convection coefficients are used to verify this fact.

Funder

Instituto Politecnico Nacional

Consejo Nacional de Ciencia y Tecnología

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3