Design of a Centralized Bioenergy Unit at Comarca Lagunera, Mexico: Modeling Strategy to Optimize Bioenergy Production and Reduce Methane Emissions

Author:

Silva-González José Alberto,Hernández-De Lira Inty Omar,Rodríguez-Martínez AntonioORCID,Ruiz-Santoyo Grace Aileen,Juárez-López Berenice,Balagurusamy NagamaniORCID

Abstract

A centralized bioenergy unit was simulated, focusing on optimizing the manure transport chain, installing a centralized biogas plant, operation costs of the process, biogas upgrading, organic fertilizer production, and economic analyses. Comarca Lagunera from northeast Mexico was chosen as a study zone due to the existing number of dairy farms and livestock population (64,000 cattle heads). Two scenarios were analyzed: The first centralized scenario consisted of selecting one unique location for the anaerobic digesters for the 16 farms; the second decentralized scenario consisted of distributing the anaerobic digesters in three locations. Optimal locations were determined using mathematical modeling. The bioenergy unit was designed to process 1600 t/day of dairy manure. Results indicated that biomethane production was a more profitable option than generating electricity with non-purified methane. The amount of biomethane production was 58,756 m3/day. Economic analysis for centralized bioenergy unit scenario showed a net production cost of USD $0.80 per kg of biomethane with a profit margin of 14.4% within 10.7 years. The decentralized bioenergy unit scenario showed a net production cost of USD $0.80 per kg of biomethane with a profit of 12.9% within 11.4 years. This study demonstrated the techno-economical and environmental feasibility for centralized and decentralized bioenergy units.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. How can mathematical models help in the biogas generation process?;Energy Sources, Part A: Recovery, Utilization, and Environmental Effects;2024-01-11

2. Design of an automated manure collection system for the production of biogas through biodigesters;2022 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS);2022-06-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3