Comparison of Empirical and Analytical Solutions for Open-Channel Flow Velocity with Common Grass Species in Taiwan

Author:

Hsieh Ping-ChengORCID,Lin Yi-Cheng,Wang Yung-ChiehORCID

Abstract

Grassed channels utilize the soil stabilization and water infiltration enhancement functions of grass in order to conserve soil and water in drainage systems. The construction processes and hydraulic mechanisms of grassed channels are more complicated, depending on the conditions of both soil and grass. As flow resistance is affected by grass characteristics, giving a single value of Manning’s n for a grass type under different flow conditions may lead to over-conservative designs or safety concerns. In this study, grassed flow experiments were carried out in a flume, with a bed of red soil covered by three grass species and with the flow conditions of three bed slopes. Average flow velocities were evaluated using five methods, including Manning’s equation and an analytical method. Comparison between the methods showed that Manning’s equation was unable to properly reflect the grass characteristic effects on the flow, but the analytical method performed better in estimating the average velocity and velocity profiles. The experimental results will be useful for the verification of mathematical methods, including analytical solutions and numerical models of grassed flow. For application, the relationships of average flow velocity against the grass layer relative height were proposed based on the analytical method as a reference for a hillslope drainage system design in Taiwan.

Funder

Taiwan Area National Expressway Engineering Bureau

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3