Results from Developments in the Use of a Scanning Sonar to Support Diving Operations from a Rescue Ship

Author:

Grządziel Artur

Abstract

In recent years, widespread use of scanning sonars for acoustic imaging of the seabed surface can be observed. These types of sonars are mainly used with tripods or special booms, or are mounted onboard remotely operated or unmanned vehicles. Typical scanning sonar applications include search and recovery operations, imaging of underwater infrastructure, and scour monitoring. The use of these sonars is often limited to shallow waters. Diver teams or underwater remotely operated vehicles (ROV) are commonly used to inspect shipwrecks, port wharfs, and ship hulls. However, reduced underwater visibility, submerged debris, and extreme water depths can limit divers’ capabilities. In this paper, a novel, nonstandard technique for use of a scanning sonar is proposed. The new application for scanning sonar technology is a practical solution developed on the Polish Navy’s search and rescue ship “Lech.” To verify the effectiveness of the proposed technique, the author took part in four different studies carried out in the southeastern Baltic Sea. The tests were performed using the MS 1000 scanning sonar. The results demonstrate that the proposed technique has the potential to provide detailed sonar images of the seabed and underwater objects before the descent of divers. The divers get acquainted with the underwater situation, which undoubtedly increases the safety of the entire operation. Scanning sonars are unlikely to completely replace the work of divers but may reduce the number and duration of dives. The sonar use technique turned out to be useful when rescuing a crew of a submarine that crashed and settled on the sea bottom as part of a naval exercise. The sonar data obtained during four experimental tests performed in the Baltic Sea prove the validity, usefulness, and significance of the proposed technique, especially from the standpoint of safety of underwater work.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference53 articles.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3