Abstract
Under complex sea conditions, ship detection from remote sensing images is easily affected by sea clutter, thin clouds, and islands, resulting in unreliable detection results. In this paper, an end-to-end convolution neural network method is introduced that combines a deep convolution neural network with a fully connected conditional random field. Based on the Resnet architecture, the remote sensing image is roughly segmented using a deep convolution neural network as the input. Using the Gaussian pairwise potential method and mean field approximation theorem, a conditional random field is established as the output of the recurrent neural network, thus achieving end-to-end connection. We compared the proposed method with other state-of-the-art methods on the dataset established by Google Earth and NWPU-RESISC45. Experiments show that the target detection accuracy of the proposed method and the ability of capturing fine details of images are improved. The mean intersection over union is 83.2% compared with other models, which indicates obvious advantages. The proposed method is fast enough to meet the needs for ship detection in remote sensing images.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Subject
General Earth and Planetary Sciences
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献