Robust Motion Control for UAV in Dynamic Uncertain Environments Using Deep Reinforcement Learning

Author:

Wan KaifangORCID,Gao Xiaoguang,Hu Zijian,Wu Gaofeng

Abstract

In this paper, a novel deep reinforcement learning (DRL) method, and robust deep deterministic policy gradient (Robust-DDPG), is proposed for developing a controller that allows robust flying of an unmanned aerial vehicle (UAV) in dynamic uncertain environments. This technique is applicable in many fields, such as penetration and remote surveillance. The learning-based controller is constructed with an actor-critic framework, and can perform a dual-channel continuous control (roll and speed) of the UAV. To overcome the fragility and volatility of original DDPG, three critical learning tricks are introduced in Robust-DDPG: (1) Delayed-learning trick, providing stable learnings, while facing dynamic environments; (2) adversarial attack trick, improving policy’s adaptability to uncertain environments; (3) mixed exploration trick, enabling faster convergence of the model. The training experiments show great improvement in its convergence speed, convergence effect, and stability. The exploiting experiments demonstrate high efficiency in providing the UAV a shorter and smoother path. While, the generalization experiments verify its better adaptability to complicated, dynamic and uncertain environments, comparing to Deep Q Network (DQN) and DDPG algorithms.

Funder

National Natural Science Foundation of China

Aeronautical Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3