Abstract
Spatiotemporal fusion is considered a feasible and cost-effective way to solve the trade-off between the spatial and temporal resolution of satellite sensors. Recently proposed learning-based spatiotemporal fusion methods can address the prediction of both phenological and land-cover change. In this paper, we propose a novel deep learning-based spatiotemporal data fusion method that uses a two-stream convolutional neural network. The method combines both forward and backward prediction to generate a target fine image, where temporal change-based and a spatial information-based mapping are simultaneously formed, addressing the prediction of both phenological and land-cover changes with better generalization ability and robustness. Comparative experimental results for the test datasets with phenological and land-cover changes verified the effectiveness of our method. Compared to existing learning-based spatiotemporal fusion methods, our method is more effective in predicting phenological change and directly reconstructing the prediction with complete spatial details without the need for auxiliary modulation.
Subject
General Earth and Planetary Sciences
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献