A Novel Deep Learning-Based Spatiotemporal Fusion Method for Combining Satellite Images with Different Resolutions Using a Two-Stream Convolutional Neural Network

Author:

Jia Duo,Song Changqing,Cheng Changxiu,Shen ShiORCID,Ning Lixin,Hui Chun

Abstract

Spatiotemporal fusion is considered a feasible and cost-effective way to solve the trade-off between the spatial and temporal resolution of satellite sensors. Recently proposed learning-based spatiotemporal fusion methods can address the prediction of both phenological and land-cover change. In this paper, we propose a novel deep learning-based spatiotemporal data fusion method that uses a two-stream convolutional neural network. The method combines both forward and backward prediction to generate a target fine image, where temporal change-based and a spatial information-based mapping are simultaneously formed, addressing the prediction of both phenological and land-cover changes with better generalization ability and robustness. Comparative experimental results for the test datasets with phenological and land-cover changes verified the effectiveness of our method. Compared to existing learning-based spatiotemporal fusion methods, our method is more effective in predicting phenological change and directly reconstructing the prediction with complete spatial details without the need for auxiliary modulation.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3