Monitoring of Fine-Scale Warm Drain-Off Water from Nuclear Power Stations in the Daya Bay Based on Landsat 8 Data

Author:

Liu MengdiORCID,Yin Xiaobin,Xu QingORCID,Chen Yuxiang,Wang Bowen

Abstract

Monitoring the drain-off water from nuclear power stations by high-resolution remote sensing satellites is of great significance for ensuring the safe operation of nuclear power stations and monitoring environmental changes. In order to select the optimal algorithm for Landsat 8 Thermal Infrared Sensor (TIRS) data to monitor warm drain-off water from the Daya Bay Nuclear Power Station (DNPS) and the Ling Ao Nuclear Power Station (LNPS) located on the southern coast of China, this study applies the edge detection method to remove stripes and produces estimates of four Sea Surface Temperature (SST) inversion methods, the Radiation Transfer Equation Method (RTM), the Single Channel algorithm (SC), the Mono Window algorithm (MW) and the Split Window algorithm (SW), using the buoy and Minimum Orbit Intersection Distances (MOIDS) SST data. Among the four algorithms, the SST from the SW algorithm is the most consistent with the buoy, the MODIS SST, the ERA-Interim and the Optimum Interpolation Sea Surface Temperature (OISST). Based on the SST retrieved from the SW algorithm, the tidal currents calculated by the Finite-Volume Coastal Ocean Model (FVCOM) and winds from ERA-Interim, the distribution of the warm drain-off from the two nuclear power stations is analyzed. First, warm drain-off water is mainly distributed in a fan-shaped area from the two nuclear power stations to the center of the Daya Bay. The SST of the warm drain-off is about 1–4 °C higher than the surrounding water and exceeds 6 °C at the drain-off outfall. Second, the tide determines the shape and distribution characteristics of the warm drain-off area. The warm drain-off water flows to the northeast during the flood tide. During the ebb tide, the warm drain-off water flows toward the southwest direction as the tide flows toward the bay mouth, forming a fan-shaped area. Moreover, the temperature increase intensity in the combined discharge channel during the flood tide is lower than that during the ebb tide, and the low temperature rising area during the flood tide is smaller than that during the ebb tide.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference35 articles.

1. Distribution of therm-water pollution of nuclear power plant using the thermal infrared Band of HJ-IRS data-taking Daya Bay as an example;Liang;Remote Sens. Inf.,2012

2. Characterization Factors for Thermal Pollution in Freshwater Aquatic Environments

3. Potential risk and prevention of phytoplankton outbreak to water-cooling system in nuclear power plant in Fangchenggang, Guangxi;He;Oceanol. Et Limnol. Sin.,2019

4. AVHRR satellite remote sensing and shipboard measurements of the thermal plume from the Daya Bay, nuclear power station, China

5. Application of satellite infrared data for mapping of thermal plume contamination in coastal ecosystem of Korea

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3