Remotely Sensed Land Surface Temperature-Based Water Stress Index for Wetland Habitats

Author:

Ciężkowski WojciechORCID,Szporak-Wasilewska Sylwia,Kleniewska Małgorzata,Jóźwiak Jacek,Gnatowski TomaszORCID,Dąbrowski Piotr,Góraj MaciejORCID,Szatyłowicz JanORCID,Ignar Stefan,Chormański JarosławORCID

Abstract

Despite covering only 2–6% of land, wetland ecosystems play an important role at the local and global scale. They provide various ecosystem services (carbon dioxide sequestration, pollution removal, water retention, climate regulation, etc.) as long as they are in good condition. By definition, wetlands are rich in water ecosystems. However, ongoing climate change with an ambiguous balance of rain in a temperate climate zone leads to drought conditions. Such periods interfere with the natural processes occurring on wetlands and restrain the normal functioning of wetland ecosystems. Persisting unfavorable water conditions lead to irreversible changes in wetland habitats. Hence, the monitoring of habitat changes caused by an insufficient amount of water (plant water stress) is necessary. Unfortunately, due to the specific conditions of wetlands, monitoring them by both traditional and remote sensing techniques is challenging, and research on wetland water stress has been insufficient. This paper describes the adaptation of the thermal water stress index, also known as the crop water stress index (CWSI), for wetlands. This index is calculated based on land surface temperature and meteorological parameters (temperature and vapor pressure deficit—VPD). In this study, an unmanned aerial system (UAS) was used to measure land surface temperature. Performance of the CWSI was confirmed by the high correlation with field measurements of a fraction of absorbed photosynthetically active radiation (R = −0.70) and soil moisture (R = −0.62). Comparison of the crop water stress index with meteorological drought indices showed that the first phase of drought (meteorological drought) cannot be detected with this index. This study confirms the potential of using the CWSI as a water stress indicator in wetland ecosystems.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3