Abstract
Non-intrusive load monitoring (NILM) is a fast developing technique for appliances operation recognition in power system monitoring. At present, most NILM algorithms rely on the assumption that all fluctuations in the data stream are triggered by identified appliances. Therefore, NILM of identifying unidentified appliances is still an open challenge. To pursue a scalable solution to energy monitoring for contemporary unidentified appliances, we propose a voltage-current (V-I) trajectory enabled deep pairwise-supervised hashing (DPSH) method for NILM. DPSH performs simultaneous feature learning and hash-code learning with deep neural networks, which shows higher identification accuracy than a benchmark method. DPSH can generate different hash codes to distinguish identified appliances. For unidentified appliances, it generates completely new codes that are different from codes of multiple identified appliances to distinguish them. Experiments on public datasets show that our method can get better F1-score than the benchmark method to achieve state-of-the-art performance in the identification of unidentified appliances, and this method maintains high sustainability to identify other unidentified appliances through retraining. DPSH can be resilient against appliance changes in the house.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Colleges and Universities in Hebei Province Science Research Program
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献