Classification of Aggressive Movements Using Smartwatches

Author:

Tchuente Franck,Baddour NatalieORCID,Lemaire Edward D.ORCID

Abstract

Recognizing aggressive movements is a challenging task in human activity recognition. Wearable smartwatch technology with machine learning may be a viable approach for human aggressive behavior classification. This research identified a viable classification model and feature selector (CM-FS) combination for separating aggressive from non-aggressive movements using smartwatch data and determined if only one smartwatch is sufficient for this task. A ranking method was used to select relevant CM-FS models across accuracy, sensitivity, specificity, precision, F-score, and Matthews correlation coefficient (MCC). The Waikato environment for knowledge analysis (WEKA) was used to run 6 machine learning classifiers (random forest, k-nearest neighbors (kNN), multilayer perceptron neural network (MP), support vector machine, naïve Bayes, decision tree) coupled with three feature selectors (ReliefF, InfoGain, Correlation). Microsoft Band 2 accelerometer and gyroscope data were collected during an activity circuit that included aggressive (punching, shoving, slapping, shaking) and non-aggressive (clapping hands, waving, handshaking, opening/closing a door, typing on a keyboard) tasks. A combination of kNN and ReliefF was the best CM-FS model for separating aggressive actions from non-aggressive actions, with 99.6% accuracy, 98.4% sensitivity, 99.8% specificity, 98.9% precision, 0.987 F-score, and 0.984 MCC. kNN and random forest classifiers, combined with any of the feature selectors, generated the top models. Models with naïve Bayes or support vector machines had poor performance for sensitivity, F-score, and MCC. Wearing the smartwatch on the dominant wrist produced the best single-watch results. The kNN and ReliefF combination demonstrated that this smartwatch-based approach is a viable solution for identifying aggressive behavior. This wrist-based wearable sensor approach could be used by care providers in settings where people suffer from dementia or mental health disorders, where random aggressive behaviors often occur.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3