Semantic Evidential Grid Mapping Using Monocular and Stereo Cameras

Author:

Richter SvenORCID,Wang YiqunORCID,Beck Johannes,Wirges Sascha,Stiller Christoph

Abstract

Accurately estimating the current state of local traffic scenes is one of the key problems in the development of software components for automated vehicles. In addition to details on free space and drivability, static and dynamic traffic participants and information on the semantics may also be included in the desired representation. Multi-layer grid maps allow the inclusion of all of this information in a common representation. However, most existing grid mapping approaches only process range sensor measurements such as Lidar and Radar and solely model occupancy without semantic states. In order to add sensor redundancy and diversity, it is desired to add vision-based sensor setups in a common grid map representation. In this work, we present a semantic evidential grid mapping pipeline, including estimates for eight semantic classes, that is designed for straightforward fusion with range sensor data. Unlike other publications, our representation explicitly models uncertainties in the evidential model. We present results of our grid mapping pipeline based on a monocular vision setup and a stereo vision setup. Our mapping results are accurate and dense mapping due to the incorporation of a disparity- or depth-based ground surface estimation in the inverse perspective mapping. We conclude this paper by providing a detailed quantitative evaluation based on real traffic scenarios in the KITTI odometry benchmark dataset and demonstrating the advantages compared to other semantic grid mapping approaches.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3