An Instance Segmentation-Based Method to Obtain the Leaf Age and Plant Centre of Weeds in Complex Field Environments

Author:

Quan LongzheORCID,Wu Bing,Mao ShourenORCID,Yang Chunjie,Li HengdaORCID

Abstract

Leaf age and plant centre are important phenotypic information of weeds, and accurate identification of them plays an important role in understanding the morphological structure of weeds, guiding precise targeted spraying and reducing the use of herbicides. In this work, a weed segmentation method based on BlendMask is proposed to obtain the phenotypic information of weeds under complex field conditions. This study collected images from different angles (front, side, and top views) of three kinds of weeds (Solanum nigrum, barnyard grass (Echinochloa crus-galli), and Abutilon theophrasti Medicus) in a maize field. Two datasets (with and without data enhancement) and two backbone networks (ResNet50 and ResNet101) were replaced to improve model performance. Finally, seven evaluation indicators are used to evaluate the segmentation results of the model under different angles. The results indicated that data enhancement and ResNet101 as the backbone network could enhance the model performance. The F1 value of the plant centre is 0.9330, and the recognition accuracy of leaf age can reach 0.957. The mIOU value of the top view is 0.642. Therefore, deep learning methods can effectively identify weed leaf age and plant centre, which is of great significance for variable spraying.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference46 articles.

1. Autonomous robotic weed control systems: A review

2. Weed segmentation using texture features extracted from wavelet sub-images

3. Plant Physiology and Development;Taiz,2015

4. Sensitivity of Barnyard Grass at Different Leaf Stage to Bispyribac-Sodium and Cyhalofop-Butyl;Xiu;J. Weeds,2017

5. Epicuticular wax on leaf cuticles does not establish the transpiration barrier, which is essentially formed by intracuticular wax

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3