Unsupervised Machine Learning for GNSS Reflectometry Inland Water Body Detection

Author:

Kossieris Stylianos12ORCID,Asgarimehr Milad12ORCID,Wickert Jens12

Affiliation:

1. German Research Centre for Geosciences GFZ, 14473 Potsdam, Germany

2. Institute of Geodesy and Geoinformation Science, Faculty VI, Technical University of Berlin, 10623 Berlin, Germany

Abstract

Inland water bodies, wetlands and their dynamics have a key role in a variety of scientific, economic, and social applications. They are significant in identifying climate change, water resource management, agricultural productivity, and the modeling of land–atmosphere exchange. Changes in the extent and position of water bodies are crucial to the ecosystems. Mapping water bodies at a global scale is a challenging task due to the global variety of terrains and water surface. However, the sensitivity of spaceborne Global Navigation Satellite System Reflectometry (GNSS-R) to different land surface properties offers the potential to detect and monitor inland water bodies. The extensive dataset available in the Cyclone Global Navigation Satellite System (CYGNSS), launched in December 2016, is used in our investigation. Although the main mission of CYGNSS was to measure the ocean wind speed in hurricanes and tropical cyclones, we show its capability of detecting and mapping inland water bodies. Both bistatic radar cross section (BRCS) and signal-to-noise ratio (SNR) can be used to detect, identify, and map the changes in the position and extent of inland waterbodies. We exploit the potential of unsupervised machine learning algorithms, more specifically the clustering methods, K-Means, Agglomerative, and Density-based Spatial Clustering of Applications with Noise (DBSCAN), for the detection of inland waterbodies. The results are evaluated based on the Copernicus land cover classification gridded maps, at 300 m spatial resolution. The outcomes demonstrate that CYGNSS data can identify and monitor inland waterbodies and their tributaries at high temporal resolution. K-Means has the highest Accuracy (93.5%) compared to the DBSCAN (90.3%) and Agglomerative (91.6%) methods. However, the DBSCAN method has the highest Recall (83.1%) as compared to Agglomerative (82.7%) and K-Means (79.2%). The current study offers valuable insights and analysis for further investigations in the field of GNSS-R and machine learning.

Funder

GFZ—German Research Centre for Geosciences GFZ, 14473 Potsdam, Germany

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ecological effects of land use and land cover changes on lakes in urban environments;Sustainable Development;2024-05-27

2. Vegetation extraction from Landsat8 operational land imager remote sensing imagery based on Attention U-Net and vegetation spectral features;Journal of Applied Remote Sensing;2024-05-13

3. Potential of GNSS-R for the Monitoring of Lake Ice Phenology;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2024

4. Land Remote Sensing Applications Using Spaceborne GNSS Reflectometry: A Comprehensive Overview;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3