Abstract
In this paper, the dynamic responses of a large-scale multiple-support road viaduct to mining-induced seismic events registered in two regions of mining activity were compared. The regions differ in geological structure, which results in discrepancies in the dominant frequency content. Spatial variation of ground motion causing the kinematic excitation non-uniformity was accounted for in the dynamic analyses of this large-scale structure. Non-uniform mining-induced kinematic excitation models were proposed, with respect to the specificity of mining origin quakes. The dynamic performance of the viaduct was determined using three different methods of calculation: the time history analysis, the response spectrum analysis, and the multiple support response spectrum analysis. Both the uniform and non-uniform kinematic excitation models were adopted for the dynamic performance assessment. The research revealed that the dynamic response of some members of the structure, determined using the non-uniform excitation model, was significantly greater than that obtained for the uniform one. Hence, in the dynamic analysis of multiple-support structures under mining-induced events, the effect of spatial variation of ground motion should be considered. The study pointed out that the commonly used response spectrum analysis may lead to the underestimation of the dynamic response of large-scale multiple-support structures. Instead, the multiple support response spectrum method, which takes into account the non-uniformity of ground motion, is recommended as a conservative approximation. This method provides a safe upper estimation of the full-dynamic analysis results of large-scale structures under mining-induced tremors. Finally, the research indicated that the dynamic performance of a structure strongly depends on the frequency range attributed to a specific mining region. The dynamic performance of identical engineering structures under tremors of similar maximal amplitudes may differ significantly due to discrepancies in frequency contents of shocks occurring in various mining regions.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献