Computational Intelligence-Based Optimization Methods for Power Quality and Dynamic Response Enhancement of ac Microgrids

Author:

Jumani Touqeer AhmedORCID,Mustafa Mohd Wazir,Hamadneh Nawaf N.,Atawneh Samer H.ORCID,Rasid Madihah Md.,Mirjat Nayyar Hussain,Bhayo Muhammad Akram,Khan Ilyas

Abstract

The penetration of distributed generators (DGs) in the existing power system has brought some real challenges regarding the power quality and dynamic response of the power systems. To overcome the above-mentioned issues, the researchers around the world have tried and tested different control methods among which the computational intelligence (CI) based methods have been found as most effective in mitigating the power quality and transient response problems intuitively. The significance of the mentioned optimization approaches in contemporary ac Microgrid (MG) controls can be observed from the increasing number of published articles and book chapters in the recent past. However, literature related to this important subject is scattered with no comprehensive review that provides detailed insight information on this substantial development. As such, this research work provides a detailed overview of four of the most extensively used CI-based optimization techniques, namely, artificial neural network (ANN), fuzzy logic (FL), adaptive neuro-fuzzy inference system (ANFIS) and genetic algorithm (GA) as applied in ac MG controls from 42 research articles along with their basic working mechanism, merits, and limitations. Due to space and scope constraints, this study excludes the applications of swarm intelligence-based optimization methods in the studied field of research. Each of the mentioned CI algorithms is explored for three major MG control applications i.e., reactive power compensation and power quality, MPPT and MG’s voltage, frequency, and power regulation. In addition, this work provides a classification of the mentioned CI-based optimization studies based on various categories such as key study objective, optimization method applied, DGs utilized, studied MG operating mode, and considered operating conditions in order to ease the searchability and selectivity of the articles for the readers. Hence, it is envisaged that this comprehensive review will provide a valuable one-stop source of knowledge to the researchers working in the field of CI-based ac MG control architectures.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. AVR System Improvement: Fast and Optimal Tuning PID Control Using Safe Experimentation Dynamics Algorithm;2024 International Conference on System Science and Engineering (ICSSE);2024-06-26

2. Accurate Identification of Harmonic Distortion for Micro-Grids Using Artificial Intelligence-Based Predictive Models;IEEE Access;2024

3. Optimized Control of an Isolated Wind Energy Conversion System;Green Energy and Technology;2024

4. Grey Wolf Optimized Pi Controller for High Gain SEPIC Converter for PV Application;2023 International Conference on Sustainable Communication Networks and Application (ICSCNA);2023-11-15

5. Deep Reinforcement Learning for Microgrid Power Management System;2023 9th International Conference on Control, Decision and Information Technologies (CoDIT);2023-07-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3