The Effect of the Zonular Fiber Angle of Insertion on Accommodation

Author:

Feng Liying12ORCID,Pierscionek Barbara3ORCID,Weeber Henk1,Canovas Vidal Carmen1,Rozema Jos J.24ORCID

Affiliation:

1. Johnson & Johnson Surgical Vision, 9728 NX Groningen, The Netherlands

2. Visual Optics Lab Antwerp (VOLANTIS), Faculty of Medicine and Health Sciences, University of Antwerp, 2000 Antwerp, Belgium

3. Faculty of Health Medicine and Social Care, Medical Technology Research Centre, Anglia Ruskin University, Chelmsford CM1 1SQ, UK

4. Department of Ophthalmology, Antwerp University Hospital, 2650 Edegem, Belgium

Abstract

Purpose: With age, there is an anterior shift of the ciliary body in the eye, which alters the angle of zonular insertion in older eyes compared with younger eyes. This study aims to simulate lens accommodation with different zonular angles to consider the influence of zonular position on lens accommodative capacity. Methods: Models were constructed based on lenses aged 11, 29, and 45 years using a 2D axisymmetric structure that included a capsule, cortex, nucleus, and zonular fibers. The different zonular fibers were simulated by changing the position of the point where the zonular fibers connect to the ciliary body. The effect of the different zonular fiber insertion angles on the model shape and optical power was analyzed. Results: The models show that smaller angles made by zonular fibers to the surface of the lens lead to larger optical power changes with simulated stretching. When the models were stretched, and when varying the zonule angles, the optical power of the 11-, 29-, and 45-year-old models changed up to 0.17 D, 0.24 D, and 0.30 D, respectively. The effect of zonular angles on the anterior radius of curvature of the anterior surface varied by 0.29 mm, 0.23 mm, and 0.25 mm for the 11-, 29-, and 45-year-old models, respectively. Conclusions: Larger zonular fiber insertion angles cause smaller deformation and less accommodative change, while parallel zonules induce the largest change in lens shape.

Funder

European Union Horizon 2020 research and innovation program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3