Abstract
Bounding the best achievable error probability for binary classification problems is relevant to many applications including machine learning, signal processing, and information theory. Many bounds on the Bayes binary classification error rate depend on information divergences between the pair of class distributions. Recently, the Henze–Penrose (HP) divergence has been proposed for bounding classification error probability. We consider the problem of empirically estimating the HP-divergence from random samples. We derive a bound on the convergence rate for the Friedman–Rafsky (FR) estimator of the HP-divergence, which is related to a multivariate runs statistic for testing between two distributions. The FR estimator is derived from a multicolored Euclidean minimal spanning tree (MST) that spans the merged samples. We obtain a concentration inequality for the Friedman–Rafsky estimator of the Henze–Penrose divergence. We validate our results experimentally and illustrate their application to real datasets.
Subject
General Physics and Astronomy
Reference53 articles.
1. Image registration and segmentation by maximizing the Jensen-Renyi divergence;Hamza,2003
2. Blind source separation using Renyi's mutual information
3. Divergence measures for statistical data processing—An annotated bibliography
4. On a measure of divergence between two multinomial populations;Battacharyya;Sankhy ā Indian J. Stat.,1946
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献