Combining Green Metrics and Digital Twins for Sustainability Planning and Governance of Smart Buildings and Cities

Author:

Corrado Casey R.,DeLong Suzanne M.ORCID,Holt Emily G.,Hua Edward Y.ORCID,Tolk AndreasORCID

Abstract

Creating a more sustainable world will require a coordinated effort to address the rise of social, economic, and environmental concerns resulting from the continuous growth of cities. Supporting planners with tools to address them is pivotal, and sustainability is one of the main objectives. Modeling and simulation augmenting digital twins can play an important role to implement these tools. Although various green best practices have been utilized over time and there are related attempts at measuring green success, works in the published literature tend to focus on addressing a single problem (e.g., energy efficiency), and a comprehensive approach that takes the multiple facets of sustainable urban planning into consideration has not yet been identified. This paper begins with a review of recent research efforts in green metrics and digital twins. This leads to developing an approach that evaluates organizational green best practices to derive metrics, which are used for computational decision support by digital twins. Furthermore, it leverages these research results and proposes a metric-driven framework for sustainability planning that understands a city as a sociotechnical complex system. Such a framework allows the practitioner to take advantage of recent developments and provides computational decision support for the complex challenge of sustainability planning at the various levels of urban planning and governance.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3