Finned PV Natural Cooling Using Water-Based TiO2 Nanofluid

Author:

Al Aboushi Ahmad,Abdelhafez Eman,Hamdan Mohammad

Abstract

The efficiency of PV (photovoltaic) modules is highly dependent on the operating temperature. The objective of this work is to enhance the performance of PV by passive cooling using aluminum fins that have been nanocoated (like those on an automobile radiator). A rise in the cell temperature of the module PV leads to a decrease in its performance. As a result, an effective cooling mechanism is required. In this work, the performance of the PV module has been improved using natural convection, which was achieved by placing three similar PV modules next to each other in order to test them simultaneously. The first panel will be the base panel and will be used for comparison purposes. An automotive radiator (with aluminum fins) was firmly fixed onto the rear of the other two PV modules, and the fins of the third PV panel had titanium oxide (TiO2) water-based nanofluid applied to them. The power produced by the PV modules, as well as their rear side temperatures, were recorded every 30 min over four months. A temperature reduction of 4.0 °C was attained when TiO2 water-based nanofluid was sprayed onto the panel’s finned rear side. This was followed by the scenario where the rear side was only finned, with a temperature drop of 1.0 °C. As a result of the temperature reduction, the percentage of power produced by the coated-finned PV and the finned PV increased by 5.8 and 1.5 percent, respectively. This caused an increase in PV efficiency of 1.1 percent for coated-finned panels and 0.4 percent for finned PV.

Funder

Al-Zaytoonah University of Jordan

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference21 articles.

1. Solar Radiation and Ambient Temperature Effects on The Performances of a PV Pumping System;Hamrouni;Rev. Energies Renouvelables,2008

2. PVGIS Approach for Assessing the Performances of The First PV Grid-Connected Power Plant in Morocco;Barhdadi;arXiv,2012

3. Improved PV/T solar collectors with heat extraction by forced or natural air circulation

4. Improving Photovoltaic Module Efficiency Using Water Cooling

5. An active cooling system for photovoltaic modules

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3