Photodegradation of Organic Pollutants in Seawater and Hydrogen Production via Methanol Photoreforming with Hydrated Niobium Pentoxide Catalysts

Author:

Asencios Yvan J. O.ORCID,Machado Vanessa A.

Abstract

In this work, the photocatalytic activity of Hydrated Niobium Pentoxide (synthesized by a simple and inexpensive method) was explored in two unknown reactions reported for this catalyst: the photodegradation of phenol in seawater and the photoreforming of methanol. The Hydrated Niobium Pentoxide (Nb1) was synthesized from the reaction of niobium ammoniacal oxalate NH4[NbO(C2O4)2·H2O]•XH2O with a strong base (NaOH). Further treatment of this catalyst with H2O2 led to a light-sensitive Hydrated Niobium Pentoxide (Nb2). The photocatalysts were characterized by XRD, DRS, SEM Microscopy, FTIR-ATR, EDX, and specific surface area (SBET). The characterization results demonstrate that the treatment of Hydrated Niobium Pentoxide sensitized the material, increased the surface area of the material, diminished the average particle size, and modified its surface charge, and formed peroxo groups on the catalytic surface. Although both photocatalysts (Nb1 and Nb2) were active for both proposed reactions, the sensitization of the photocatalyst was beneficial in distinct situations. In the photocatalytic degradation of phenol in seawater, the sensitization of the photocatalyst did not enhance the photocatalytic activity. In both photoreactions studied, the addition of the Pt° promoter readily increased the photocatalytic performance of both photocatalysts; in this case, the sensitized photocatalyst recorded the best results. The presence of OH• radicals was confirmed, and the great contribution of the Pt° promoter was in the increase in OH• radical generation; this increase was more effective in the sensitized photocatalyst. Our work demonstrated a simple and inexpensive way to synthesize niobium photocatalysts that can effectively be used in the photodegradation of phenol in seawater and in the photoreforming of methanol to produce hydrogen.

Funder

São Paulo Research Foundation

National Council for Scientific and Technological Development

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3