Green Synthesis of De Novo Bioinspired Porous Iron-Tannate Microstructures with Amphoteric Surface Properties

Author:

Rathnayake Hemali,Dawood Sheeba,Pathiraja GayaniORCID,Adrah Kelvin,Ayodele OlubunmiORCID

Abstract

Bioinspired porous microstructures of iron-tannate (Fe(III)-TA) coordination polymer framework were synthesized by catenating natural tannic acid with iron(II), using a scalable aqueous synthesis method in ambient conditions. The chemical composition, morphology, physiochemical properties, and colloidal stability of microstructures were elucidated. The surface area (SBET) and the desorption pore volume were measured to be 70.47 m2/g and 0. 44 cm3/g, respectively, and the porous structure was confirmed with an average pore dimension of ~27 nm. Microstructures were thermally stable up to 180 °C, with an initial weight loss of 13.7% at 180 °C. They exhibited high chemical stability with pH-responsive amphoteric properties in aqueous media at pH levels ranging from 2 to 12. Supporting their amphoteric sorption, microstructures exhibited rapid removal of Pb+2 from water, with 99% removal efficiency, yielding a maximum sorption capacity of 166.66 mg/g. Amphoteric microstructures of bioinspired metal–phenolate coordination polymers remain largely unexplored. Additionally, natural polyphenols have seldomly been used as polytopic linkers to construct both porous and pH-responsive amphoteric coordination polymer frameworks with a robust structure in both acidic and basic media. Thus, this de novo porous microstructure of Fe(III)-TA and its physiochemical surface properties have opened new avenues to design thermally and chemically stable, eco-friendly, low-cost amphoteric sorbents with multifunctionality for adsorption, ion exchange, separation, storage, and sensing of both anions and cations present in heterogeneous media.

Funder

National Science Foundation

United States Department of Defense

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3