Clogging of Infiltration Basin and Its Impact on Suspended Particles Transport in Unconfined Sand Aquifer: Insights from a Laboratory Study

Author:

Zou Zhike,Shu Longcang,Min Xing,Chifuniro Mabedi Esther

Abstract

A laboratory study was undertaken to investigate the physical clogging of a sand medium by injecting suspended particles (SP), with diameters ranging from 0.03 to 63.41 μm, into an infiltration basin, which was installed in a sand tank under the condition of constant head. The hydraulic conductivity (K) of the saturated porous medium was found to have decreased by 27% because of re-arrangement over the seven days of self-filtration. A clogging layer was observed on the infiltration basin bottom, probably due to straining over the stormwater infiltration stage. Particle-size analyses also indicate that retention of bigger SP led to faster straining of smaller SP, despite the small fraction of bigger SP. The clogging layer weakened the hydraulic connection between the water level in the basin and the water table of the unconfined aquifer until nearly no water could infiltrate into the aquifer. The deposition of finer SP that entered into the aquifer are governed by the hydrodynamic forces. These finer SP caused non-uniform permeability reduction of the porous medium, with an estimated 35% of permeability reduction occurring beneath the infiltration basin. However, the reduction appears to be reversible, as the fine SP deposited on the pore surfaces of the porous medium can be released or detached by the continuous horizontal hydraulic gradient. Extended tailing of the outlet breakthrough curve (BTC) also strongly supported the detachment of SP. This study focused on the effects of particles’ polydispersity and hydrodynamic forces on the hydraulic characteristics of the porous medium.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3