Author:
Zou Zhike,Shu Longcang,Min Xing,Chifuniro Mabedi Esther
Abstract
A laboratory study was undertaken to investigate the physical clogging of a sand medium by injecting suspended particles (SP), with diameters ranging from 0.03 to 63.41 μm, into an infiltration basin, which was installed in a sand tank under the condition of constant head. The hydraulic conductivity (K) of the saturated porous medium was found to have decreased by 27% because of re-arrangement over the seven days of self-filtration. A clogging layer was observed on the infiltration basin bottom, probably due to straining over the stormwater infiltration stage. Particle-size analyses also indicate that retention of bigger SP led to faster straining of smaller SP, despite the small fraction of bigger SP. The clogging layer weakened the hydraulic connection between the water level in the basin and the water table of the unconfined aquifer until nearly no water could infiltrate into the aquifer. The deposition of finer SP that entered into the aquifer are governed by the hydrodynamic forces. These finer SP caused non-uniform permeability reduction of the porous medium, with an estimated 35% of permeability reduction occurring beneath the infiltration basin. However, the reduction appears to be reversible, as the fine SP deposited on the pore surfaces of the porous medium can be released or detached by the continuous horizontal hydraulic gradient. Extended tailing of the outlet breakthrough curve (BTC) also strongly supported the detachment of SP. This study focused on the effects of particles’ polydispersity and hydrodynamic forces on the hydraulic characteristics of the porous medium.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献