A Novel Partial Discharge Detection Method Based on the Photoelectric Fusion Pattern in GIL

Author:

Zang Yiming,Qian Yong,Liu WeiORCID,Xu Yongpeng,Sheng Gehao,Jiang Xiuchen

Abstract

Optical detection and ultrahigh frequency (UHF) detection are two significant methods of partial discharge (PD) detection in the gas-insulated transmission lines (GIL), however, there is a phenomenon of signals loss when using two types of detections to monitor PD signals of different defects, such as needle defect and free particle defect. This makes the optical and UHF signals not correspond strictly to the actual PD signals, and therefore the characteristic information of optical PD patterns and UHF PD patterns is incomplete which reduces the accuracy of the pattern recognition. Therefore, an image fusion algorithm based on improved non-subsampled contourlet transform (NSCT) is proposed in this study. The optical pattern is fused with the UHF pattern to achieve the complementarity of the two detection methods, avoiding the PD signals loss of different defects. By constructing the experimental platform of optical-UHF integrated detection for GIL, phase-resolved partial discharge (PRPD) patterns of three defects were obtained. After that, the image fusion algorithm based on the local entropy and the phase congruency was used to produce the photoelectric fusion PD pattern. Before the pattern recognition, 28 characteristic parameters are extracted from the photoelectric fusion pattern, and then the dimension of the feature space is reduced to eight by the principal component analysis. Finally, three kinds of classifiers, including the linear discriminant analysis (LDA), support vector machine (SVM), and k-nearest neighbor (KNN), are used for the pattern recognition. The results show that the recognition rate of all the photoelectric fusion pattern under different classifiers is higher than that of optical and UHF patterns, up to the maximum of 95%. Moreover, the photoelectric fusion pattern not only greatly improves the recognition rate of the needle defect and the free particle defect, but the recognition accuracy of the floating defect is also slightly improved.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3