Optical Performance Analysis of Single Flow Through and Concentric Tube Receiver Coupled with a Modified CPC Collector Under Different Configurations

Author:

Akhter ,Gilani ,Al-Kayiem ,Ali

Abstract

Compound parabolic concentrating (CPC) collectors have great potential to provide sustainable solar thermal energy for many applications operating in the medium temperature range. This paper presents the design, development and performance evaluation of a modified CPC collector integrated with an evacuated tube receiver. The optical performance of the designed CPC paired with concentric tube receiver is compared with that of a CPC coupled with single flow through evacuated tube receiver for stationary installation in the East-West and North-South directions. Ray tracing simulations of different configurations demonstrate that CPC coupled with single flow through receivers suffer high gap losses, especially at smaller incidence angles which are considerably alleviated by a concentric tube receiver arrangement. East-West installation of CPC paired with concentric tube receiver exhibited superior optical performance than all other configurations. The yearly average optical efficiency of CPC with concentric tube receiver was 5% higher than that of a single flow through receiver within the acceptance angle. A 60% truncated CPC coupled with concentric tube receiver emerged as the most effective design, which was fabricated for experimental testing. The tests conducted under actual outdoor tropical environmental conditions demonstrated that the experimental optical efficiency reached to about 69% in the case of N-S installation and 66.5% in an E-W arrangement. The experimental results closely match the simulation outcomes, which indicate the proposed performance prediction technique as instrumental for selecting the most effective configuration of CPC collectors for medium temperature heat supply.

Funder

Ministry of Higher Education, Malaysia

Universiti Teknologi Petronas

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3