Preparation of Nanoporous PdIrZn Alloy Catalyst by Dissolving Excess ZnO for Cathode of High- Temperature Polymer Electrolyte Membrane Fuel Cells

Author:

You Dae Jong,Kim Do-Hyung,Kim Ji Man,Pak ChanhoORCID

Abstract

Carbon-supported nanoporous palladium-iridium–zinc (NP-PdIrZn) electrocatalyst was prepared through the modification of the alcohol-reduction process following the selective dissolution of excess ZnO nanoparticles using NaOH solution. The electrocatalyst was applied successfully to the cathode for a high-temperature polymer electrolyte membrane fuel cell (HT-PEMFC). X-ray diffraction (XRD) patterns of the NP-PdIrZn nanoparticles suggests formation of the ternary alloy and complete removal of ZnO without the formation of individual Pd, Ir, or Zn nanoparticles. Moreover, transmission electron microscopy (TEM) images displayed porous nanoparticles with an irregular shape, which was generated by removing the ZnO from the PdIrZn–ZnO nanocomposites, and was prepared by using the excessive Zn precursor. The electrochemical surface area (ECSA) of the NP-PdIrZn catalysts was estimated by cyclic voltammetry using a rotating disk electrode method , and the oxygen reduction reaction (ORR) activity was evaluated by a linear sweep method. The NP-PdIrZn catalysts showed larger ECSA and higher ORR activity than those of the PdIr and PdIrZn catalysts, which may be attributed to the increased exposed surface area by selective etching of the ZnO in the composites. Furthermore, the NP-PdIrZn catalyst exhibited excellent performance (0.66 V) in a single cell under the HT-PEMFC condition than those of the PdIr (0.58 V) and PdIrZn (0.62 V) catalysts, indicating that geometric and electronic control of Pd-based alloy can improve the single-cell performance for the HT-PEMFC.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3