Experimental Investigation of Transient Characteristics of a Double Suction Centrifugal Pump System during Starting Period

Author:

Jin Faye,Yao Zhifeng,Li Duanming,Xiao Ruofu,Wang Fujun,He Chenglian

Abstract

The starting phase for pumps in water transportation pipelines is crucial and has significant transient characteristics which merit further study in order to evaluate the operational stability of the pumping system. This paper presents the results of a study in which the relative steady operating conditions and starting period of a large double-suction centrifugal pump were monitored in real time, including pressure fluctuations, shaft run-out and vibration at the bearing. The transient characteristics of a double-suction centrifugal pump under different operating conditions have been analyzed using fast Fourier transform (FFT) and continuous wavelet transform (CWT). Results indicate broadband frequency components within the spectrum of pressure fluctuations in the volute casing under all test conditions, and the central frequency of the broadband frequency gradually decreases as flow rate increases and approaches the blade frequency, which is the primary reason for an increase in blade-frequency amplitude. This may produce a vibration frequency that is similar to the natural frequency of a certain part of the double-suction centrifugal pump during the starting period, which causes the resonance phenomenon. The radial force is also large during the starting period, which causes eccentric wear of the seal ring at the impeller inlet.

Funder

National Natural Science Foundation of China

Chinese Universities Scientific Fund

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3