Modelling and Analysis of Plate Heat Exchangers for Flexible District Heating Systems

Author:

Chyhryn SerafymORCID

Abstract

Seamless integration of district heating (DH) and power systems implies their flexible operation, which extends their typical operational boundaries and, thus, affects performance of key components, such as plate heat exchangers (PHXs). Despite that the heat transfer in a PHX is regulated by mass flows, flexible operation and demand variations cause shifts in temperature levels, which affects the system operation and must be efficiently accounted for. In this paper, an overall heat transfer coefficient (OHTC) model with direct relation to temperature is proposed. The model is based on a linear approximation of thermophysical components of the forced convection coefficient (FCC). On one hand, it allows to account for temperature variations as compared to mass flow-based models, thus, improving accuracy. On the other hand, it does not involve iterative lookup of thermophysical properties and requires fewer inputs, hence, reducing computational effort. The proposed linear model is experimentally verified on a laboratory PHX against estimated correlations for FCC. A practical estimation procedure is proposed based on component data. Additionally, binding the correlation to one of varying parameters shows reduction in the heat transfer error. Finally, operational optimization test cases for a basic DH system demonstrate better performance of the proposed models as compared to those previously used.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference20 articles.

1. Equivalent Models of District Heating Systems for On-Line Minimization of Operational Costs of the Complete District Heating System;Pálsson,1999

2. Operation optimization of existing district heating systems

3. Study of a district heating system with the ring network technology and plate heat exchangers in a consumer substation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Identifying of Unsteady Performance of Oil to Water Heat Exchanger Integrated with Process;International Journal of Heat and Technology;2022-04-30

2. Sliding mode control of the temperature of a nonlinear plate heat exchange system;2021 14th International Symposium on Computational Intelligence and Design (ISCID);2021-12

3. Dynamic behaviour of a plate heat exchanger: Influence of temperature disturbances and flow configurations;International Journal of Heat and Mass Transfer;2020-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3