A Novel Prediction Approach for Short-Term Renewable Energy Consumption in China Based on Improved Gaussian Process Regression

Author:

Huang ,Yang ,Gao ,Jiang ,Dong

Abstract

Energy consumption issues are important factors concerning the achievement of sustainable social development and also have a significant impact on energy security, particularly for China whose energy structure is experiencing a transformation. Construction of an accurate and reliable prediction model for the volatility changes in energy consumption can provide valuable reference information for policy makers of the government and for the energy industry. In view of this, a novel improved model is developed in this article by integrating the modified state transition algorithm (MSTA) with the Gaussian processes regression (GPR) approach for non-fossil energy consumption predictions for China at the end of the 13th Five-Year Project, in which the MSTA is utilized for effective optimization of hyper-parameters in GPR. Aiming for validating the superiority of MSTA, several comparisons are conducted on two well-known functions and the optimization results show the effectiveness of modification in the state transition algorithm (STA). Then, based on the latest statistical renewable energy consumption data, the MSTA-GPR model is utilized to generate consumption predictions for overall renewable energy and each single renewable energy source, including hydropower, wind, solar, geothermal, biomass and other energies, respectively. The forecasting results reveal that the proposed improved GPR can promote the forecasting ability of basic GPR and obtain the best prediction effect among all the other comparison models. Finally, combined with the forecasting results, the trend of each renewable energy source is analyzed.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3