Positive Phase Pressure Function and Pressure Attenuation Characteristic of a Liquid Carbon Dioxide Blasting System

Author:

Ke Bo,Zhou Keping,Ren Gaofeng,Shi Ji,Zhang Yanan

Abstract

As environmental requirements become more stringent, the liquid carbon dioxide blasting system is one of the non-explosive blasting technologies that, with low tensile stress energy, will replace the chemical explosive blasting technology, and the impact pressure characteristic of high-pressure fluid is a crucial factor in the process of rock breaking. To further investigate the impact and pressure attenuation characteristics of high-pressure fluid during the phase transition of liquid carbon dioxide blasting system, the pressure curves of high-pressure fluid in liquid carbon dioxide blasting systems at different distances were measured in the laboratory. Based on the mechanism analysis of phase transition kinetics, the initial jet velocity of the four experiments was calculated, and the rationality of results was verified by the Bernoulli equation. The general expression of the positive phase pressure–time function was proposed, and the idealized impact pressure curve can be divided into five stages. The impact pressure field of the liquid carbon dioxide blasting system can be divided into three areas at different distances: the explosive jet impact zone, the jet edge zone and the shock wave action zone, and the pressure–contrast distance fitting equation of the liquid carbon dioxide blasting system were obtained.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference36 articles.

1. Mechanical loading and Cardox revolutionize an old mine;Weir;Coal Age,1928

2. Improvement of coal seam gas drainage by under-panel cross-strata stimulation using highly pressurized gas

3. Coal augers: Development and application underground;Wilson;Trans. Inst. Min. Eng.,1954

4. Use of Cardox in coal mining in Sarre;Clairet;Rev. Industrie Miner.,1952

5. Environmentally friendly techniques for high gas content thick coal seam stimulation─multi-discharge CO2 fracturing system

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3