A Low-Power Setup Proposal for Power Transformer Loading Tests

Author:

Galvão Thiago,Simonetti DomingosORCID

Abstract

A setup for testing transformers under load through low power converter is presented in this paper. This setup is used for testing power transformers as it allows to verify their performance under operating conditions regarding aspects such as heating, voltage regulation, and mounting robustness. The main goal of the study is centered on replacing a full power Back-to-Back converter (1 pu) by a fractional power one (less than 0.1 pu). The converter, a Voltage Source Inverter (VSI), is a series connected between two equally sized transformers and controls the current flowing in the system. Load profile configurations set according to power factor, current harmonics, or even power level can be imposed to evaluate the performance of the Transformer Under Test (TUT) and the entire system. Theoretical analysis, and simulation results employing Matlab/Simulink platform, considering a typical transformer of a 75 kVA power distribution grid with 13.8 kV/220 V voltage are presented to corroborate the proposal. The required VSI power achieved in the simulations is a fraction of the total power of transformer under test, and the grid power consumed is also of small order justified by losses.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference27 articles.

1. Test Code for Liquid-Immersed Distribution, Power, and Regulating Transformers,2016

2. Power Transformers-Part 1: General. International Electrotechnical Commission—IEC,2000

3. Regenerative Active Electronic Load for Testing Power Transformers Under Linear and Nonlinear Conditions

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3