Developing a Data Mining Based Model to Extract Predictor Factors in Energy Systems: Application of Global Natural Gas Demand

Author:

Hafezi RezaORCID,Akhavan Amir Naser,Zamani Mazdak,Pakseresht SaeedORCID,Shamshirband ShahaboddinORCID

Abstract

Recently, the natural gas (NG) global market attracted much attention as it is cleaner than oil and, simultaneously in most regions, is cheaper than renewable energy sources. However, price fluctuations, environmental concerns, technological development, emerging unconventional resources, energy security challenges, and shipment are some of the forces made the NG market more dynamic and complex. From a policy-making perspective, it is vital to uncover demand-side future trends. This paper proposed an intelligent forecasting model to forecast NG global demand, however investigating a multi-dimensional purified input vector. The model starts with a data mining (DM) step to purify input features, identify the best time lags, and pre-processing selected input vector. Then a hybrid artificial neural network (ANN) which is equipped with genetic optimizer is applied to set up ANN’s characteristics. Among 13 available input features, six features (e.g., Alternative and Nuclear Energy, CO2 Emissions, GDP per Capita, Urban Population, Natural Gas Production, Oil Consumption) were selected as the most relevant feature via the DM step. Then, the hybrid learning prediction model is designed to extrapolate the consumption of future trends. The proposed model overcomes competitive models refer to different five error based evaluation statistics consist of R2, MAE, MAPE, MBE, and RMSE. In addition, as the model proposed the best input feature set, results compared to the model which used the raw input set, with no DM purification process. The comparison showed that DmGNn overcame dramatically a simple GNn. Also, a looser prediction model, such as a generalized neural network with purified input features obtained a larger R2 indicator (=0.9864) than the GNn (=0.9679).

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference147 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3